- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Angizi, Shaahin (3)
-
Kochar, Nakul (3)
-
Ahmed, Sabbir (2)
-
Liu, Jacqueline (2)
-
Zhou, Ranyang (2)
-
Ekiert, Lucas (1)
-
Fan, Deliang (1)
-
Najafi, Deniz (1)
-
Rakin, Adnan Siraj (1)
-
Siraj_Rakin, Adnan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Zhou, Ranyang; Liu, Jacqueline; Ahmed, Sabbir; Kochar, Nakul; Rakin, Adnan Siraj; Angizi, Shaahin (, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems)
-
Kochar, Nakul; Ekiert, Lucas; Najafi, Deniz; Fan, Deliang; Angizi, Shaahin (, GLSVLSI '23: Proceedings of the Great Lakes Symposium on VLSI 2023)Deep Neural Network (DNN) acceleration with digital Processing-in-Memory (PIM) platforms at the edge is an actively-explored domain with great potential to not only address memory-wall bottlenecks but to offer orders of performance improvement in comparison to the von-Neumann architecture. On the other side, FPGA-based edge computing has been followed as a potential solution to accelerate compute-intensive workloads. In this work, adopting low-bit-width neural networks, we perform a solid and comparative inference performance analysis of a recent processing-in-SRAM tape-out with a low-resource FPGA board and a high-performance GPU to provide a guideline for the research community. We explore and highlight the key architectural constraints of these edge candidates that impact their overall performance. Our experimental data demonstrate that the processing-in-SRAM can obtain up to ~160x speed-up and up to 228x higher efficiency (img/s/W) compared to the under-test FPGA on the CIFAR-10 dataset.more » « less
An official website of the United States government
